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In a recent article, M. Kol~i[ and M. K. All study the polynomial trace map for 
products of matrices associated with substitutive sequences on a two-letter 
alphabet, the existence of which has been proved by J.-P. Allouche and 
J. Peyri6re. Computer calculations led them to conjecture some divisibility 
properties of the involved polynomials. The present work explains mathemati- 
cally why it is so. 
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The discovery of quasicrystals (1~ gave rise to many theoretical studies of 
ordered, but noncrystal lographic,  systems of atoms (see, for example, 
refs. 2 and 3). One way of generating such one-dimensional systems is to 
use substitutions operat ing on a finite alphabet. Among  these substitutions, 
those which act upon  a two-letter alphabet  are particuliarly impor tant  and 
convenient,  due to the existence of a general theorem yielding a recursion 
formula for the traces of certain products  of transfer matrices. (4~ In a recent 
article, Kolfi~ and Ali (5) were led by symbolic calculations on the computer  
to conjecture a certain divisibility proper ty  of the polynomials  which 
govern such a recursion. In the present work, this conjecture is proved to 
hold. In addition, the use of the proper  mathematical  tools simplifies and 
considerably shortens certain results of ref. 5 while generalizing them to a 
larger framework. Indeed, a substitution on a two-letter alphabet  (a, b), 
viewed as a homom orph i sm  of the monoid  of words over this alphabet  into 
itself, is a part icular endomorphism of the free group F generated by a and 
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b. Besides, we think that the use of endomorphisms of free groups instead 
of mere substitutions could lead to new useful models. 

Let us introduce some notations. 

1. If G1 and G2 are two groups, Hom(G~, G2) denotes the set of 
homomorphisms from G1 to G2. 

2. If a and t are elements of Hom(F,  F), we set a t  = t o a  (where o 
denotes the composition of functions). 

3. If K is a commutative field, SL2(K) denotes the set of 2 x 2  
matrices with determinant 1 and the entries of which are in K. 

4. An element q0 of Hom(F,  SL2(K)) is uniquely determined by the 
couple (~o(a), ~o(b)) of elements.of SL2(K). 

5. Let us denote by T the following map from Horn(F, SL2(K)) to 
K3: T(<p) = (tr ~o(a), tr ~o(b), tr q)(ab)), where tr stands for the trace. 

6. Z[x,  y, z] denotes the set of polynomials in the variables x, y, and 
z, the coefficients of which are integers. 

In these conditions we have the following results. 

Theorem 1. For  any a ~ H o m ( F ,  F), there exists a unique ( b ~  
(2[x ,  y, z] )  3 such that, for any K, and for any (peHom(F ,  SL2(K)), we 
have 

T(~0o ~) = r 

Proof. The existence of ~ is a mere reformulation of the theorem in 
ref. 4, which results from repetitive applications of the Cayley-Hamil ton 
theorem. The uniqueness results from the fact that the triple (tr A, tr B, 
tr AB) can assume any value in C 3 for suitable A and B in SL2(C). 

Corollary 1. For a and t in Hom(F,  F), we have q 5  = ~ o (/)T. 

Proof. If (p e Horn(F, SL2(K)), we have 

T((po ( a t ) )  = T((~o o z) o a )  = ~ ( T ( q o  o r ) )  = q)~o ~ ( T ( g ) ) )  

and the corollary results from the uniqueness of ~ .  

Corollary 2. If a is an automorphism of F, then the jacobian of q~ 
is either 1 or - 1 .  

Proof. This results from the chain rule and from the fact that det (b'o 
is a polynomial with integral coefficients. 

In particular, this corollary explains why the maps associated with all 
substitutions (14) in ref. 5 are volume preserving. 
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Theorem 2. Let .~(x, y, z) = x 2 + .)22 + z 2 -  x y z -  4. Then, for any 
~ Hom(F, F), there exists a polynomial Q~ ~ 7/Ix, y, z] such that 2 o 45 = 

2.Q~.  

Proof. For A and B in SL2(C), one has 2(trA, trB,  t r AB) = O if 
and only if A and B have a common eigenvector. This can be seen as 
a corollary of Fricke's formula. One can also prove this assertion by 
observing that, in a suitable base, A and B assume the forms 

( t r  I _  ; 1 )  and (trB_2 -1 ~) 

respectively, if A and B have no common eigenvector. 
If ~o ~Hom(F,  SL2(C)) is  such that 2(T(q>))=0, then qffa) and qffb) 

have a common eigenvector, and so have cp o a(a) and ~0 o a(b). Therefore, 
2(T(cp o a)) = 0. In other terms, 2(T(~0)) = 0 implies 2(~o(T(q)))) = 0. But, 
as we observed it previously, T~0 can be an arbitrary point in C 3. Therefore 
2 ~ 1 7 6  is divisible by 2 in Z[x,  y, z]. 

P r o p o s i t i o n  1. For ~ and r in Hom(F,F) ,  we have Qo~=Q~o 
~ - Q ~ .  

Proof. 

2 o ~ , = ( 2 o q S ) o r b  = ( 2  .Q~)oq5 = 2  . Q .  Q o ~  

Corollary 1 and Proposition 1 extend Theorems 2 and 3 of ref. 5. 

P r o p o s i t i o n  2. For cr ~ Horn(F, F), we have Q~(0, 0, 0) = 0 or 1. 

Proof. Take 

q ) ( a ) = ( _ ~  10) and ( p ( b ) = i ( ~  10) 

Corollary 3. If a is an automorphism of F, then Q, = 1. 

Proof. We have 

I = Q ~  lo=Q~-~oq~o.Q~ 

So Q~ and Q~_~ o q5 are nonzero constants, and therefore are identically 1. 
This accounts for all examples (14) in ref. 5. 

Example. If a is the Fibonacci substitution [ a ( a ) =  ab, a(b)= a], 
then a is invertible [ a - l ( a )  = b, a - l ( b )  = b la]. Therefore, Q~ = 1, which 
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is exactly the re la t ion discovered by K o h m o t o  e t a l .  (6~ and  by Os t lund  
et  al. (7~ 

R o m a r k .  This raises several quest ions:  

1. Does  Q~ = 1 imply  that  a is invert ible? 

2. H o w  to descr ibe the equivalence re la t ion Qo = Q~? 

3. H o w  to describe the set of po lynomia l s  Qo's? 

Concern ing  quest ion 2, if ~r 1 and a2 are au tomorph i sms  of F and if ~ 2  
is the identi ty,  then Q ~ 2  = Q~ for any z. 

Concern ing  quest ion 3, the set of po lynomia l s  Q~ is invar ian t  under  
pe rmuta t ions  of variables:  if a ( a ) = b  and  a ( b ) =  a, then ~b~(x, y, z ) =  
(y, x, z), and,  if a ( a )  = a -1 and a(b )  = ab, then ~b~(x, y, z) = (x, z, y). 
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